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LETTER TO THE EDITOR 

Exact ground and excited states of an antiferromagnetic 
quantum spin model 

Indrani Bosei- 
International Centre for Theoretical Physics, Trieste, Italy 

Received 29 August 1989 

Abstract. A quasi-one-dimensional spin model that consists of a chain of octahedra of spins 
has been suggested, for which in a certain parameter regime of the Hamiltonian the ground 
state can be written down exactly. The ground state is highly degenerate and can be other 
than a singlet. Also, several excited states can be constructed exactly. The ground state is a 
local resonating valence band state for which resonance is confined to rings of spins. Some 
exact numerical results for an octahedron of spins have also been reported. 

Antiferromagnetic (AFM) quantum spin models for which exact solutions exist are few 
in number. The ground state energy and excitation spectrum of the AFM Heisenberg 
spin-4 chain can be obtained exactly by using the Bethe ansatz (see Majumdar 1985 for 
areview). Thegroundstate, asinglet, isdisordered, i.e., has no sublatticemagnetisation, 
and the two-spin correlation function has a power law decay. Also, the excitation 
spectrum is gapless. The ground state can be described as a resonating valence bond 
(RVB) state because the state resonates between various singlet or valence bond coverings 
of the chain with all possible lengths for the valence bonds. The ground state structure 
is, however, complicated and cannot be written down explicitly. Various simple spin 
models in dimensions d 3 1 and for spins S 3 4 have been suggested (Majumdar 1969, 
Majumdar and Ghosh 1969, Shastry and Sutherland 1981a, b, Affleck et all987, Bose 
eta1 1984, Bose 1988, Kanter 1989, Doucot and Kanter 1989) for which the ground state 
structure is simple and can be written down explicitly. Most of the models suggested 
have dimerised or valence-bond (VB) ground states for which the ground state is given 
by valence bond coverings. Thevalence bonds are short-ranged, i .e. ,  confined to nearest 
neighbours or next-nearest neighbours. Such ground states are different from the RVB 
state, for which energy lowering is achieved through resonance between various valence 
bond configurations. In the VB ground states translational symmetry may or may not be 
broken (Majumdar 1969, Affleck et aZl987). In some cases it can be shown rigorously 
that the excitation spectrum has a gap and the two-spin correlation function has an 
exponential or  faster decay. Neither the RVB state nor the VB state has long-range order 
(LRO) in the two-spin correlation function. A class of quantum Hamiltonians exists (Bose 
et al1984, Bose 1988) for which Nee1 states (d = 1) and Neel-like states (a' = 3) are exact 
ground states. The ground state has perfect long-rangeNCe1 order, a quadraticdispersion 
for the spin-wave spectrum and no gap in the excitation spectrum. Issues like the 
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Figure 1. Chainofoctahedraof spins. The central plane Aineachoctahedronisperpendicular 
to the plane of the paper; i , j ,  k .  I ,  m. n denote spin sites. 

Figure 2. Resonating valence bond (RVB) state of 
four spins. This is the ground state configuration - 

/ k 1 h for the A-plane spins when (Y is G 4. 

presence or absence of LRO in the ground state of AFMS and the nature of the excitation 
spectrum are df special relevance in the context of high-T, superconductors (Anderson 
1988). A proper understanding of such issues is, however, still lacking for low-dimen- 
sional spin systems. In this Letter we construct a quasi-one-dimensional spin model for 
which the ground state in a certain parameter regime can be written down exactly. Also, 
several excited states can be determined exactly. 

The spin model to be considered consists of a chain of octahedra of spins (figure 
1). The spins have magnitude t and periodic boundary condition is assumed. Each 
octahedron of six spins consists of a central plane A of four spins and two vertex spins 
denoted by B,  The central spins interact with a coupling strength J and the vertex spins 
interact with the central spins with a strength aJ, a d 1. The Hamiltonian is written as 

where y denotes a sum over N/5 octahedra of spins, N the number of spins being an 
integral multiple of five. For a d t ,  the ground state spin configuration is as follows: in 
each A plane the S = 0 spin state is resonating between the two valence bond structures 
shown in figure 2, the corresponding eigenfunction being given by 

q’4 = Q / m )  (TTJ.1 + l l t t  + TU? + &?T$ - 2TJTJ. - 2JTJT). (2) 

The B spins are kept free. The ground state energy is given by E = -WN/5. The ground 
state is a local RVB state and highly degenerate, there being 2’1’ possible ground state 
configurations. Let us now prove that the above spin eigenfunctions describe the ground 
state. For this, one makes use of the familiar spin identity S, (S, + S, j[ i j]  = 0 where 
[ij]  describes the singlet ( l /d2){a(i)P(j)  - P(i)a(j)). Using this relation one can easily 
verify that the above configurations are exact eigenstates of the Hamiltonian (1) with 
energy E,,,,, = -2JN/5. So the true ground state energy is E,  d E,,,,,. The Hamiltonian 
can be written as C,H, where H,is the Hamiltonian for an octahedron of spins. The sum 
over y is the sum over all octahedra. Modification of the Rayleigh-Ritz variational 
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Table 1. Lowest energy eigenvalues E, (in units of J )  of the six-spin octahedron for various 
values of the coupling constant a. The figure in bracket denotes the degeneracy of the level. 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

-2.0 (4) 
-2.0 (4) 
-2.0 (4) 
-2.0 (4) 
-2.0 (4) 
-2.0 (4) 
-2.2 
-2.4 
-2.6 
-2.8 
-3.0 

principle (Shastry and Sutherland 1981a, b) suggests that E, 2 EYEyl where EY, is the 
lowest energy of the octahedron of spins. Table 1 gives the lowest energy eigenvalues of 
the coupling strength aranging from 0.0 to 1.0. For a S t ,  the lowest eigenvalue is given 
by -2J and one arrives at the inequality -2JN/5 G E,  C -WN/5 from which it is proved 
that E ,  = -21N/5. Several excited states can also be written down immediately. For any 
value of a, the energy eigenvalues of the size-spin octahedron can be determined exactly. 
The number of such eigenvalues is 64. To construct an excited state let alternate A planes 
have the RVB spin configuration of figure 2. Such A planes are separated by N/10 
octahedra of spins that can be in any one of the 64 possible eigenfunctions of an 
octahedron. Any such state is an exact eigenstate with the appropriate energy eigen- 
value. Following the above prescription, the total number of exact eigenstates for any 
value of a is 64N/10, which also include the highly degenerate ground state configurations 
for a s t .  The appendix lists some of the exact eigenstates and energy eigenvalues of 
the spin octahedron. It has not been possible as yet to write down the ground states 
exactly for a > f, The a = 1 limit is of particular interest. An exact determination of the 
energy eigenvalues and eigenfunctions of the spin octahedron for a = 1 shows the 
ground state energy of the octahedron to be -3J.  The corresponding eigenfunction is a 
spin singlet that is formed out of two spin triplets, one corresponding to the A spins and 
the other formed out of the B spins of the octahedron. For a = 1 the ground state energy 
E, satisfies the inequality -3JN/5 S E, S -2JN/5. Regarding the excitation spectrum, 
for (Y # 1, all the excited states that have been constructed exactly are separated from 
the ground state by an energy gap, and this is possibly true for the whole excitation 
spectrum. For a =  1 and for just an octahedron of spins the ground state is non- 
degenerate. The ground state for the whole chain of octahedra is not known in this limit. 
If it is unique then the Lieb-Schultz-Mattis (LSM) theorem (1961) can be applied to the 
chain. This is because, as pointed out by Affleck (1988), for half-integer spins on an 
arbitrary Bravais lattice the LSM theorem works whenever the total spin per unit cell is 
half an odd integer. For the chain of octahedra, the total spin per unit cell is 3. Thus a 
unique ground state would mean a gapless excitation spectrum. 

One can also calculate the various correlation functions in the ground state. For 
(Y S 4, any two B spins or one A spin and one B spin or any two A spins belonging to 
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different rings are totally uncorrelated. For A spins in the same ring, the correlation 
functions can be written as 

The last three correlation functions are variants of the Thouless order parameter (Thou- 
less 1967). The correlation decays as one moves away from a spin. The sign of the short 
range order indicates that on an average an up spin is surrounded by down spins and 
vice versa. The ground state in short is a quantum-spin liquid state with ultra-short- 
range order confined to rings of four spins. The rings are in S = 0 state but because the 
vertex spins can orient themselves freely, the ground state is highly degenerate and the 
ground state can be other than a singlet. On the other hand, for bipartite lattices and for 
rather general AFMHamiltonianS the Lieb-Mattis theorem (1962) tells us that the ground 
state is non-degenerate and a singlet. For the six-spin octahedron the ground state is 
non-degenerate and a singlet only in the a = 1 limit. To sum up, we have studied a quasi- 
one-dimensional spin model, namely, a chain of spin octahedra, for which in a certain 
parameter regime of the Hamiltonian ( a  s 4) the ground state can be written down 
exactly. The ground state, which is highly degenerate, can be called a local RVB state 
because resonance is confined to rings of spins, the other spins being able to orient 
themselves freely. Several exact excited states have also been constructed. Also, exact 
diagonalisation of a six-spin octahedron shows that in the a = 1 limit the ground state is 
non-degenerate and a singlet. Analysis of the chain ground state in this limit is in progress 
and the results will be reported elsewhere. 

The author gratefully acknowledges the hospitality provided by the International Centre 
for Theoretical Physics, Trieste, Italy where this work was carried out. 

Appendix 

Some exact energy eigenvalues and eigenstates of the six-spin octahedron: 

E l  = O  

V1 = a l @ 2  + a 2 @ 1 3  + a3@15 + a 4 @ 1 9  + a S @ 2 0  - a 6 @ 1 0  - a7@14 - a 8 @ 1 6  

a ,  + a 2  + a s  = a7 

a l  + a 2  + a 4  = a8 

a3 + a4 = a6 + ug 

a 2  + a4 = a6 + a7 

a l  + u3 + a s  = a 8  

a3  + a5 = a6 + a7 

E2 = 0 

q 2  = a l @ 2  + a 2 @ 1 0  + a3@14 + u 4 @ 1 9  + u5@20 - u 6 @ 1 3  - u7@15 - a 8 @ 1 6  

a ,  + a3 + a5 = a6 

a l  + a 4  = a6 + a ,  

a2 + 0 4  = a7 + a8 
a2 + a3 + a4 = a6 

a 1  + a5 = u7 + 0 8  

a2  + a 3  + u5  = a ,  

E3 = O  
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q 3  = a l $ 1 4  + a2$16 + a3$19 + a4$20 - a 5 $ 2  - a6$10 - a7$13 - a8$15 

a ,  + a4  = a5 + a7  

a l  + a4  = a6 + a8 

E 4  = 0 

a2 + a3  = a6  + a8 

a2 + a4  = as + a8 

a l  + a3  = a6  + a7 

a2 + a3  = as + a7  

q 4  = a l $ 1 0  + a2$13 + a3$16 + a4$20 - a5$2  - a6$14 - a7$15 - a8$19 

a ,  + a3  = u7 + a8 

a,  + a4  = a6 + a7  

a2 + a 4  = a5  + a6  

u2  + a3 = as + a8 

a l  + a2 = a6 + a8 

a3  + a 4  = a5  + a7 

E5 = 1.0 

q 5  = u1($2 + $14 + $13 + $20 + $17 + $12 - $16 - $10 - $19 - $15 - $11 - $18) 

E6 = -1.0 

q 6  = a1($18 - $11 - $12 + $17) 

The spin configurations are: 

$1 = ltT?&.l.l) $2 = 1 tt1iiT) $3 = I ?JJ.lT?) $ 4  = I.lli?tt) 

$12 = I JTJTi?) 

$20 = l1TMi?> 

@ 5  = I t?&?ii) $6 = 1 ?&??ii> $7 = I 1TttJi) $8 = 1 l i?$ft> 
11 tt TJ ) 

J? J? M ) 

$11 = I ?J?i?i) 

$19 = 1 ?&&??i) 
1.1 tt J? ) $15 = 1 &??&?&) $16 = /ttJ.l?&) 

References 

Affleck I 1988 Phys. Reu. B 37 5186 
Affleck I, Kennedy T, Lieb E H and Tasaki H 1987 Phys. Reu. Lett. 59 799 
Anderson P W D 1988 Frontiers and Borderlines in Many-particle Physics, Varenna Summer School, Varenna, 

Bose I, Chatterjee S and Majumdar C K 1984 Phys. Reu. B 29 2741 
Bose I 1988 J .  Phys. C: Solid State Phys 21 L841 
Doucot B and Kanter I1989 Phys. Reu. B 39 12399 
Kanter I 1989 Phys. Reu. B 39 7270 
Lieb E H and Mattis D C 1962J. Math. Phys. 3 749 
Lieb E, Schultz T and Mattis D 1961 Ann. Phys., NY 16 407 
Majumdar C K 1969 J .  Phys. C: Solid State Phys. 3 91 1 
Majumdar C K and Ghosh D K 1969 J .  Math. Phys. 10 1388; 1399 
Majumdar C K 1985 Exactly Solvable Problems in Condensed Matter and Relativistic Field Theory ed. B S 

Shastry B S and Sutherland B 1981a Phys. Reu. Lett. 47 964 
- 1981b Physica B 108 1069 
Thouless D J 1967 Proc. Phys. Soc. 90 243 

Italy (Amsterdam: North-Holland) 

Shastry, S S Jha and V Singh (Berlin: Springer) p 142 


